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[1] We study the transition between antiparallel and component collisionless magnetic
reconnection with two-dimensional particle-in-cell simulations. The primary finding is
that a guide field �0.1 times as strong as the asymptotic reconnecting field (roughly the
field strength at which the electron Larmor radius is comparable to the width of the
electron current layer) is sufficient to magnetize the electrons in the vicinity of the X line,
thus causing significant changes to the structure of the electron dissipation region. This
implies that great care should be exercised before concluding that magnetospheric
reconnection is antiparallel. We also find that even for such weak guide fields, strong
inward flowing electron beams form in the vicinity of the magnetic separatrices and
Buneman unstable distribution functions arise at the X line itself. As in the calculations
of Hesse et al. (2002) and Yin and Winske (2003) the nongyrotropic elements of the
electron pressure tensor play the dominant role in decoupling the electrons from
the magnetic field at the X line, regardless of the magnitude of the guide field and the
associated strong variations in the pressure tensor’s spatial structure. Despite these
changes, and consistent with previous work, the reconnection rate does not vary
appreciably with the strength of the guide field as it changes between 0 and a value equal
to the asymptotic reversed field.
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1. Introduction

[2] The fast dissipation of magnetic energy in collision-
less plasmas is a common occurrence in nature, with
examples ranging from tokamak sawtooth crashes to
magnetospheric substorms to solar flares. The process
common to these phenomena is thought to be magnetic
reconnection, in which oppositely directed components of
the magnetic field cross-link, forming an X line configu-
ration. The expansion of the newly connected field lines
away from the X line converts magnetic energy into
kinetic energy and heat while pulling in new flux to
sustain the process.
[3] Observations suggest that in many systems the ratio

of the characteristic reconnection time to the Alfvén cross-
ing time is �0.1. The simplest magnetohydrodynamic
(MHD) description of reconnection [Sweet, 1958; Parker,
1957] is inconsistent with this value, being too slow by
several orders of magnitude [Biskamp, 1986]. However, the
numerical simulations composing the Geospace Environ-
mental Modeling reconnection challenge [Birn et al., 2001]

showed that the inclusion of the Hall effects, which are
important at small spatial scales and are neglected in MHD,
can produce fast reconnection. The magnetic topology in
these simulations was understandably quite simple: equal
and antiparallel fields separated by a thin current layer. Yet
even in the magnetotail, where this approximation is often
close to reality, a small field directed parallel to the current
(a guide field) is often observed [Israelevich et al., 2001].
[4] The effects of a guide field Bg on magnetic reconnec-

tion have been examined before. Sharp differences have
been seen in the large-scale flows around the X line
[Hoshino and Nishida, 1983; Tanaka, 1995; Pritchett,
2001] as well as the pressure and magnetic field signatures
[Kleva et al., 1995; Rogers et al., 2003]. Three-dimensional
(3-D) particle simulations of similar systems without [Zeiler
et al., 2002] and with [Drake et al., 2003] a guide field
showed that the former was basically laminar in the direction
parallel to the guide field while the latter developed strong
turbulence. Pritchett and Coroniti [2004] noted that moder-
ate guide fields (Bg/B0 ] 1, where B0 is the asymptotic
reconnecting field) have only a slight effect on the reconnec-
tion rate, although Ricci et al. [2004] found somewhat slower
rates for larger fields (Bg/B0 = 3, 5).Hesse et al. [1999, 2002]
and Yin and Winske [2003] showed that nongyrotropic
electron motions balance the reconnection electric field at
the X line in both the antiparallel and guide field cases.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, A05210, doi:10.1029/2004JA010748, 2005

1Now at Icarus Research, Inc., Bethesda, Maryland, USA.

Copyright 2005 by the American Geophysical Union.
0148-0227/05/2004JA010748$09.00

A05210 1 of 11



[5] In light of these results, determining the minimum
guide field Bg that changes the structure of the X line
becomes of interest. If it satisfies Bg > B0, then the effects
of a guide field can usually be ignored in the magneto-
sphere. On the other hand, if the transition occurs when
Bg � B0, guide field reconnection is typical, and antipar-
allel reconnection is a special case perhaps only relevant in
simulations. On the basis of both simulations and theoretical
grounds we argue that the transition occurs when the
electron Larmor radius in the guide field at the X line
becomes smaller than the width of the electron current layer,
i.e., for Bg/B0 � 0.1. The implication is that most magneto-
spheric reconnection is probably component reconnection.
[6] In section 2 of this paper we present our computa-

tional scheme and initial conditions. In section 3 we present
results for the case Bg = 0, in section 4 we present results for
Bg = 1.0, and in section 5 we present results for Bg = 0.2.
We summarize our results and discuss their implications for
understanding magnetospheric reconnection in section 6.

2. Computational Details

[7] Our simulations are done with p3d, a massively
parallel particle-in-cell code [Zeiler et al., 2002]. The
electromagnetic fields are defined on grid points and are
advanced in time with an explicit trapezoidal leapfrog
method using second-order spatial derivatives. The Lorentz
equation of motion for each particle is evolved by a Boris
algorithm where the velocity v is accelerated by E for half a
time step, is rotated by B, and is accelerated by E for the
final half time step. To ensure that r � E = 4pr, a correction
electric field is calculated by inverting Poisson’s equation
with a multigrid algorithm.
[8] The equations solved by the code are written in

normalized units. Masses are normalized to the ion mass
mi, the magnetic field is normalized to the asymptotic value
of the reversed field, and the density is normalized to the
approximate value at the center of the current sheet. Other
normalizations derive from these: Velocities are normalized
to the Alfvén speed vA, lengths are normalized to the ion
inertial length c/wpi = di, times are normalized to the inverse
ion cyclotron frequency Wci

�1, and temperatures are normal-
ized to mivA

2.
[9] Our coordinate system is chosen so that the inflow

and outflow for an X line are parallel to ŷ and x̂, respec-
tively. The guide magnetic field and reconnection electric
field are parallel to ẑ. For comparison, our x̂, ŷ, and ẑ unit
vectors correspond to �x̂, ẑ, and ŷ in GSM coordinates. The
simulations presented here are two-dimensional in the sense
that out-of-plane derivatives are assumed to vanish, i.e.,
@/@z = 0.
[10] The initial equilibrium comprises two Harris current

sheets [Harris, 1962] superimposed on an ambient popula-
tion of uniform density. The reconnection magnetic field is
Bx = tanh[( y � Ly/4)/w0] � tanh[( y � 3Ly/4)/w0] � 1,
where w0 = 0.25 and Ly = 6.4 are the half width of the initial
current sheets and the box size in the ŷ direction, respec-
tively. This configuration has two current sheets and allows
us to use fully periodic boundary conditions. The electron
and ion temperatures, Te = 0.05 and Ti = 0.5, are initially
uniform as is the guide field Bg. Except for the background
(lobe) population, which can have arbitrary density (here

n‘ = 0.2), pressure balance uniquely determines the initial
density profile. In this equilibrium the density at the center
of each sheet is �1.1 at t = 0. At t = 0 we perturb the
magnetic field (~Bx/B0 � 0.1) to seed X lines at (x, y) =
(Lx/4, 3Ly/4) and (3Lx/4, Ly/4).
[11] To conserve computational resources, yet assure a

sufficient separation of spatial and temporal scales, we take
the electron mass to be 0.01 and the speed of light to be 20.
The domain measures 6.4 on a side, and the grid has 1024 �
1024 points, which implies that there are �16 grid points
per electron inertial length and 2 grid points per electron
Debye length. To check for convergence, we doubled the
box size for one run (for Bg = 0.2) and saw no significant
variation in our results.
[12] The particle time step is 6 � 10�4 or 0.12wpe. Our

simulations follow �109 particles and conserve energy to
better than 1 part in 1000.

3. Overview, Bg = 0

[13] Investigating the critical value of Bg with multiple
3-D simulations would entail a prohibitive computational
expense, so we instead performed a series of 2-D simu-
lations that varied only in the strength of the guide field. The
restricted dimensionality means that many turbulent modes,
including the Buneman instability seen by Drake et al.
[2003], are not present. However, other investigators have
found that the gross morphological features of reconnection
X lines are roughly invariant in the direction parallel to the
current density [Pritchett and Coroniti, 2004].
[14] A snapshot of the out-of-plane current density near

the X line for a simulation with Bg = 0 is shown in
Figure 1. The initial current sheet has completely recon-
nected; the plasma at the X line at the time shown was in
the low-density (n‘ = 0.2) lobe at the simulation’s
beginning. Since jBj = 0 at the X line for Bg = 0,
inward flowing electrons must at some point find them-
selves in a region where the magnetic field is too weak to
dominate their motion. This happens at a distance from
the X line given roughly by the electron inertial length
c/wpe 	 de, which for this simulation is

ffiffiffiffiffiffiffiffiffiffiffiffi
me=n‘

p
� 0.2

(in normalized units). Once the electrons demagnetize,
they stream toward the X line parallel to the ŷ axis,
through the region of low magnetic field, until they turn
because of the increasing field on the opposite side of the
current layer and reverse direction. They then execute
‘‘figure eight’’ trajectories [Speiser, 1965], oscillating in
the ŷ direction until escaping from the ends of the layer.
At the turning points of their trajectories (where vy ! 0)
the local electron density increases, forming a bifurcated
current sheet. Zeiler et al. [2002] have previously reported
this bifurcation, although it is particularly noticeable in our
simulations because of the high spatial resolution (16 grid
points per de) and large ion to electron temperature ratio
(Ti/Te = 10). The bifurcation would be obscured in
simulations where these parameters had smaller values.
Note that this bifurcation is at a much smaller scale than
the ion-scale splits reported in Cluster observations [Runov
et al., 2003].
[15] The bifurcation is also evident in Figure 2, which

shows the diagonal components of the electron temperature.
In analogy with the definition of the fluid pressure tensor we
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define the electron temperature tensor in a grid cell as a sum
over the N local particles:

Tab ¼
me

N

XN
i¼1

va;i � hvai
� �

vb;i � hvbi
� �

; ð1Þ

where h i denotes an average, e.g., hxi = (1/N)
PN

i¼1xi. Like
the pressure tensor, which is related to the temperature
tensor by Pab = nTab, where n is the density, the temperature
is symmetric, Tab = Tba. For an isotropic plasma the off-
diagonal elements of the temperature tensor vanish while
the diagonal elements are equal to each other and to the
scalar temperature, Taa = Te. This is the case at t = 0 in our
simulations.
[16] The decreases in Tyy and Tzz during inflow are

consistent with the adiabatic invariance of the magnetic
moment m: B � Bx decreases, while m / v?

2 /B remains
constant. Txx, approximately the parallel temperature,
simultaneously increases because of energy conservation.
Any energy change due to the interaction of the reconnec-
tion electric field Ez and the curvature and gradient B drifts
is small everywhere except near the X line.
[17] Once inside the layer, the electrons demagnetize,

and as previously seen by Zeiler et al. [2002], the
electron distribution in vy space separates into two coun-
terpropagating beams because of the crosscurrent layer
bounce motion (see Figure 2d). As a consequence, Tyy
sharply increases, as has previously been noted by
Horiuchi and Sato [1997].
[18] Despite the beams we see no evidence of a two-

stream instability, probably because of the small current
layer width. Unstable wave numbers for the electron two-

Figure 1. Reconnection in a system with Bg = 0 at t = 4.5.
(a) Out-of-plane current density overlaid with magnetic
field lines in a region surrounding the X line. The darkest
regions are not shaded correctly, having been overexposed
to show details near the X line. (b) A vertical cut through the
X line at x = 4.8.

Figure 2. Data for Bg = 0. Electron temperatures (a) Txx and (b) Tyy (see the text for definitions) near the
X line of Figure 1. (c) Cuts of the temperatures at x = 4.8. The solid line is Tyy, the dashed line is Txx, and
the dotted line is Tzz. (d) Distribution of vey in a region measuring 1.0 de long and 0.5 de high and centered
on the X line.
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stream instability satisfy kyv0 < 2wpe, where v0 is the
separation of the beam velocities [Krall and Trivelpiece,
1986]. The maximum growth rate, g = wpe/

ffiffiffi
8

p
, occurs for

kyv0 =
ffiffiffiffiffiffiffiffi
3=2

p
wpe, and as v0 ! 0, the growth rate vanishes. In

the simulation the beam separation is largest at the X line,
v0 � 8, and drops to 0 at the edges of the layer �0.22
(=de) upstream. With a local wpe � 90 the instability
criterion implies that only wavelengths l ^ 0.28 are
unstable at the X line and thus that the two-stream
instability is not excited in the narrow current layer.
[19] In a 2-D collisionless plasma the reconnection elec-

tric field at the X line is ultimately balanced by the
divergence of the electron pressure tensor [Vasyliunas,
1975]. In our units the collisionless electron fluid momen-
tum equation is

E ¼ �ve � B� 1

ne
r � ��Pe � me ve � rð Þve � me

@ve
@t

; ð2Þ

which is exact insofar as the pressure tensor ��Pe incorporates
all kinetic effects not included in the other terms. The
reconnection electric field is thus

Ez ¼� vxBy � vyBx

� �
� 1

n

@Pxz

@x
þ @Pyz

@y

� �

� m vx
@vz
@x

þ vy
@vz
@y

þ @vz
@t

� �
; ð3Þ

where we have dropped the electron subscript and have
used the fact that @/@z = 0. In a steady state, only the
pressure terms can balance Ez at the X line, as can be
seen in Figure 3. Far from the current layer, the electron
MHD relation E = �ve � B holds, while nearer the X
line both the off-diagonal elements of the pressure tensor
and the inertial terms are important. At the X line the
pressure tensor terms dominate. Both @Pyz/@y and @Pxz/@x
contribute, although the former is larger in our simulation
by a factor of �2. The term proportional to @/@t is not

shown separately but, as expected during quasi-steady
reconnection, is negligible.

4. Guide Field, Bg = 1.0

[20] A large guide field changes the structure of the X line
by both lowering the total plasma b and magnetizing the
electrons throughout the current sheet. When Bg is small,
the dominant wave mode at small length scales, and hence
the governor of the particle dynamics, is the whistler. This is
seen when electrons in the outflow region are accelerated by
Ez and drag the magnetic field out of the reconnection plane
[Mandt et al., 1994; Shay et al., 1998], causing the well-
known quadrupolar symmetry in Bz along the separatrices
[Sonnerup, 1979; Terasawa, 1983]. As Bg increases, the
importance of the kinetic Alfvén mode grows [Rogers et al.,
2001]. For that mode the coupling occurs when Ek
accelerates electrons along newly reconnected field lines,
increasing the electron density on one side of the current
layer, decreasing it on the other, and forming a quadrupolar
pattern [Kleva et al., 1995]. The perturbations in Bz acquire
a component determined by pressure balance, leading to a
symmetric component that can, for very large Bg, over-
whelm the quadrupolar pattern [Rogers et al., 2003].
Figure 4 shows the electron density and Bz from the
simulation discussed in section 3 (Bg = 0) and one that is
otherwise identical except that Bg = 1.0.
[21] The parallel velocity of the electrons, mostly directed

out of the reconnection plane, develops a quadrupolar
symmetry opposite to that of the density (high density
paired with low velocity and vice versa). The density
asymmetry is a larger effect, however, and the result is an
out-of-plane current density that is canted with respect to
the initial current sheet, as can be seen in Figure 5. Because
inflowing electrons remain magnetized in the guide field,
they do not have figure eight trajectories at the X line, and
the bifurcations in the electron density and current density
disappear.
[22] In the Bg = 0 simulation discussed in section 3 the

magnetic field on the inflow axis (x = 4.8) was dominantly
parallel to x̂ (except at the X line where jBj = 0). For Bg =
1.0, in contrast, the field rotates �45	 between the lobe
plasma and the X line. The rotation complicates the inter-
pretation of the temperature tensor of equation (1), so to
simplify, we transform to a coordinate system where the
axes are parallel and perpendicular to the local magnetic
field. In this frame,

��T ¼ Tkb̂b̂þ T?
��I� b̂b̂

	 
h i
þ ��Tng; ð4Þ

where b̂ is a unit vector in the direction of the magnetic
field, ��I is the unit tensor, and ��Tng contains the nongyrotropic
terms. Images of the parallel and perpendicular temperatures
along with cuts through the X line are shown for Bg = 1.0 in
Figures 6a–6c.
[23] Conservation of magnetic moment again explains the

decrease in T? along the inflow direction. Since Bg is
constant, the decrease in B is smaller than was the case in
section 3, and the relative decrease of T? in Figure 6c is
smaller than in Figure 2d. Because the electrons remain
magnetized at the X line, T? remains small, in sharp
contrast to the results shown in Figure 2. The increase in Tk

Figure 3. For Bg = 0 a cut through the X line at x = 4.8
showing the various terms balancing Ez in equation (3). Ez

is shown by the stars, and the dashed, solid, and dotted lines
denote the v � B, divergence of the pressure tensor, and
inertial terms, respectively. To reduce the noise, the plotted
quantities were averaged over 20 grid points in x and 4 grid
points in y.
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inside the current sheet is due to the intermixing of colder
inflowing electrons and electrons accelerated by the parallel
electric field along the separatrices. The unimodal distribu-
tion function of Figure 6d confirms that the electrons do not
execute Speiser-like orbits.
[24] The terms balancing the reconnection field in

equation (3) are shown for this case in Figure 7. At the
X line the off-diagonal elements of the pressure tensor again
make the primary contribution, although, as a comparison of
Figures 7 and 3 makes clear, the scale length over which they
are important is much smaller than when Bg = 0. This is
consistent with the results of Hesse et al. [2002]. Unlike the
antiparallel case the @Pxz/@x term makes the dominant
contribution, while the @Pyz/@y term is negligible.

5. Transition

[25] For what Bg does the transition between the recon-
nection of section 3 and that of section 4 occur? Far from
the X line, where both species are completely magnetized,
the guide field cannot play an important dynamical role
unless Bg ^ B0. As a particle approaches the current layer,
however, the reconnecting component decreases, and the
influence of the guide field rises. Qualitatively, Bg is
important when the associated electron Larmor radius is
equal to the spatial scale associated with the X line.
[26] Consider a system with Bg = 0, and examine the z

component of the electron equation of motion under quasi-
steady conditions,

mevey
@vez
@y

¼ �eEz �
e

c
vexBy � veyBx

� �
� 1

n

@Pyz

@y
; ð5Þ

Figure 4. Electron density and out-of-plane magnetic field Bz in simulations with Bg = 0 and 1.0: (a) ne,
Bg = 0; (b) Bz, Bg = 0; (c) ne, Bg = 1.0; and (d) Bz, Bg = 1.0. In Figures 4a–4d, t = 4.5. In Figures 4a and
4c, dark areas have been overexposed to show detail at the X line.

Figure 5. Reconnection in a system with Bg = 1.0 at t =
4.5. (a) Out-of-plane current density overlaid with magnetic
field lines in a region surrounding the X line. Dark areas
have been overexposed to show detail at the X line. (b) A
vertical cut through the X line at x = 4.8.
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where we have assumed that derivatives with respect to x
can be neglected when compared to those with respect to
y. In a 2-D steady state system, Faraday’s law implies
that Ez is relatively uniform (see Figures 3 and 7). Far
from the X line, electrons are frozen to the magnetic
field, and the Ez and v � B terms are roughly equal.
Within the current layer the convective part of the inertial
term and the pressure tensor become important, with the
transition occurring at some length scale Dy where the
terms balance. If, for simplicity, we restrict our attention
to the vertical axis through the X line, symmetry implies
that By is zero and

vez ¼ DyWx;up; ð6Þ

where Wx,up = eBx,up/mec is the cyclotron frequency based
on the reconnecting field at y = ±Dy. In general, Bx,up will
be less than the asymptotic reconnecting field. Within this
inner scale the electrons carry most of the current, so we
also have

4p
c
Jz ¼

4p
c
nvez � r� B � @Bx

@y
; ð7Þ

where we have ignored both the displacement current and
the contribution from the current due to @By/@x.
Converting derivatives with respect to y to division by
Dy and combining equations (6) and (7), we find that

Dy ¼
c

wpe

¼ de: ð8Þ

The electron velocity producing the current is vez �
deWx,up.

[27] Now consider the addition of a small ambient guide
field. The magnetic field no longer vanishes at the X line,
and the electron Larmor radius there is

rg ¼
vey

We;g
; ð9Þ

where we have taken vex � 0 on the basis of symmetry
considerations and where We,g = eBg/mec is the electron
cyclotron frequency based on Bg and vey is the electron
inflow velocity into the unmagnetized region around the X
line. The guide field will be important when this Larmor
radius is smaller than the width of the current layer, rg < Dy.
[28] The major contributors to the electron inflow veloc-

ity vey are the thermal speed and the E � B drift. A Sweet-

Figure 6. Data for Bg = 1.0: (a) Tk, (b) T?, and (c) vertical cuts at x = 4.8. The solid line is Tk, and the
dotted line is T?. (d) Distribution of vey in a region measuring 1.0 de long and 0.5 de high and centered on
the X line.

Figure 7. Terms balancing the reconnection electric field
for Bg = 1.0. Ez is shown by the stars, and the dashed, solid,
and dotted lines denote the v � B, divergence of the
pressure tensor, and inertial terms, respectively. Note the
difference in horizontal scale between Figures 3 and 7. To
reduce noise, the plotted quantities were averaged over
16 grid points in x and 4 grid points in y.
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Parker-like scaling suggests that the ratio of the E � B
inflow speed to the outflow speed is equal to the normalized
reconnection electric field Ez. For a wide range of con-
ditions it has been shown [Shay et al., 1999, 2001] that the
outflow is roughly equal to the electron Alfvén speed vAe
and Ez � 0.1. In the low-temperature limit (vth � vE�B) this
argument implies that vey � 0.1vAe and the bound for a
dynamically important Bg is given by

rg ¼
vey

We;g
¼ 0:1vAe

We;g
< Dy ¼ de ð10Þ

or

Bg > Ez � 0:1: ð11Þ

In our simulations, Ez, and hence the transitional value of
Bg, is �0.2.
[29] Equation (11) is not valid when the electron thermal

speed vth dominates the contribution from the E � B drift.
In the high-temperature limit one must substitute vth rather
than vE�B for vey in equation (9), and the relevant criterion
becomes bg < 1, where b is evaluated with the lobe density
and temperature. In the simulations presented here, vth �
vE�B, and so the critical value of the guide field remains
Bg � 0.2.
[30] We note that the estimate for the electron inflow

velocity vye � 0.1cAe is smaller than the counterstreaming
velocity of the electrons shown in Figure 2d. This is because
a local electrostatic field Ey develops inside the electron
current layer that accelerates the electrons toward the
magnetic null. However, this field decelerates the electrons
once they cross the null, so this electric field does not
change the effective electron Larmor radius of the electrons
in the guide field.
[31] We have explored the transition from antiparallel to

finite guide field reconnection through a series of simula-
tions with Bg = 0, 0.1, 0.2, 0.4, and 0.75 and have found, in
agreement with our above arguments, that simulations with
Bg = 0.2 most clearly display characteristics intermediate
between Bg = 0 and Bg = 1.
[32] Figure 8 shows the out-of-plane current density for a

run identical to those discussed in sections 3 and 4 except
that Bg = 0.2. There is no bifurcation in the current density,
and the canting of the current layer, while present, is not as
strong as the case with Bg = 1.0 (Figure 5). Figure 9 shows
the electron density and Bz for this simulation. The electron
density is not bifurcated and bears some resemblance to the
quadrupolar cavities so prominent in Figure 4c, while Bz,
although still basically quadrupolar, no longer has the strong
symmetry obvious in Figure 4b. Evidence for a transition
can also be seen in the parallel and perpendicular temper-
atures shown in Figure 10. The results are clearly interme-
diate between Figures 2 and 6. The cut in Figure 10c shows
that the increase in the parallel temperature as electrons
approach the X line is similar in both magnitude and profile
to the Bg = 0 case. Within the current layer, however, Tk
increases to a sharp peak similar to that for Bg = 1. The

Figure 8. Reconnection in a system with Bg = 0.2 at t =
4.5. (a) Out-of-plane current density overlaid with magnetic
field lines in a region surrounding the X line. Dark areas
have been overexposed to show detail at the X line. (b) A
vertical cut through the X line at x = 4.8.

Figure 9. (a) Electron density and (b) out-of-plane magnetic field Bz in a simulation with Bg = 0.2. In
Figure 9a, dark areas have been overexposed to show detail at the X line.
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perpendicular temperature decreases toward the X line and
then, within the layer, rises to a peak. This peak is midway
in magnitude between the Bg = 0 and Bg = 1 cases.
[33] In order to examine the variation with guide field of

the off-diagonal pressure tensor terms of equation (3) it is
necessary to separate the gyrotropic and nongyrotropic
contributions. The gyrotropic part is strongly influenced
by the presence of a guide field and, in any case, does not
contribute to balancing Ez at the X line. Figure 11 shows the

change in the nongyrotropic portion of Pyz as the guide field
varies. The cuts in Figure 11d demonstrate that as Bg

increases, the role of @Pyz/@y in balancing the reconnection
electric field at the X line decreases dramatically.
[34] The presence of a small guide field also has signa-

tures far from the X line. Figure 12 shows the vx-vy
distribution functions for three simulations with different
guide fields taken at the same point, just upstream of the top
left separatrix and, for the runs with a finite guide field,

Figure 10. Data from Bg = 0.2: (a) Tk and (b) T?, and (c) vertical cuts at x = 4.8. The solid line is Tk, and
the dotted line is T?. (d) Distribution of vey in a region measuring 1.0 de long and 0.5 de high and centered
on the X line.

Figure 11. Nongyrotropic component of Pyz for Bg of (a) 0, (b) 0.2, and (c) 1.0. (d) Cuts at x = 4.8 in
Figures 11a–11c. The solid, dashed, and dotted lines are for Bg = 0, 0.2, and 1.0, respectively.
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inside the density cavity. Because of the low plasma density
within the cavity the parallel electric field remains finite
over an extended region along the separatrix in the Bg = 1.0
system [Pritchett and Coroniti, 2004]. This electric field
locally accelerates the electrons, producing a strong beam
flowing toward the X line. However, even for Bg = 0.2 the
beam is already clearly present. (The features in the top left
quadrants of Figures 12a–12c are electrons that have
already been accelerated at the X line.) There is a net
current but no distinct beam for Bg = 0. The origin, detailed
structure, and effect of this extended region of Ek will be
discussed in a future publication.

6. Discussion

[35] This study suggests that only a minimal guide field,
Bg � 0.1 B0, is required to alter the dynamics of electrons
both in the vicinity of the X line and at remote locations
along the separatrices. The implication is that in most real
systems, including the magnetotail, the guide field might
not be negligible. In any case, this study suggests that one
cannot simply ignore the guide field if Bg � B0.
[36] A counterargument could be made that reconnection

with Bg 6¼ 0 is significantly slower compared to the case
with Bg = 0 and therefore the magnetosphere will self-select
locations where the guide field is nearly zero (less than 0.1
of the antiparallel field). We find that this is not the case.
The guide field will strongly alter the dynamics both locally
and at large scales before the rate of reconnection is
significantly affected. Specifically, Figure 13 shows that

magnetic flux reconnects only slightly (�10%) slower for
Bg = 1.0 than for Bg = 0, a result consistent with other
simulations [Rogers et al., 2003; Pritchett and Coroniti,
2004]. It should be noted, however, that the onset of
reconnection in real systems could be biased either for
or against guide fields. Our simulations do not address
this question since they start with a finite perturbation
that effectively places the system in the nonlinear regime
at t = 0.
[37] Another factor potentially affecting guide field re-

connection is the effect of an ambient pressure gradient and
the associated diamagnetic drifts. At the magnetopause,
where density gradients perpendicular to the current layer

Figure 12. The vx-vy distribution functions taken just upstream of the separatrix for runs for Bg of (a) 0,
(b) 0.2, and (c) 1.0, respectively. The slanted line in each panel shows the direction of the local magnetic
field. Shades of gray are measured in units of phase space density. The counterpropagating features at the
top left of each distribution function are due to electrons accelerated at the X line.

Figure 13. Reconnected flux versus time for the three runs
discussed in this work. The solid, dashed, and dotted lines
correspond to Bg = 0, 0.2, and 1.0, respectively. The
reconnection rate is the slope of the curves.
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produce diamagnetic drifts, the reconnection rate can be
strongly reduced [Swisdak et al., 2003]. However, it was
shown that diamagnetic suppression occurs for small guide
fields with the transition occurring when bx > Bg/B0 (for
density length scales of order of an ion inertial length).
Combined with the results of this work, the conclusion is
again that magnetopause reconnection always includes a
dynamically important guide field.
[38] Guide fields also play an important role in the

development of turbulence in three-dimensional reconnec-
tion simulations. Simulations by Drake et al. [2003] with
Bg = 5.0 showed that turbulence can self-consistently
develop at a reconnection X line. The acceleration of
electrons by the reconnection electric field led to a
separation of the ion and electron drift speeds, which then
triggered the Buneman instability. At late time the nonlinear
evolution led to the formation of electron holes, localized
bipolar regions of electric field. These structures produced
an effective drag between the ions and electrons that was
large enough to compete with the off-diagonal pressure
tensor in balancing the reconnection electric field. Earlier
3-D simulations with Bg = 0 by Zeiler at al. [2002] produced
no significant turbulence at the X line once reconnection was
established. The strong electron heating for Bg = 0 (as shown
in Figure 2) suppressed all streaming instabilities near the
X line since for Ti � Te such instabilities require a beam
velocity vb greater than the electron thermal speed vth. Yet
since Bg = 5.0 is significantly larger than typical magne-
tospheric values, it was unclear from these studies whether
turbulence and enhanced ion-electron drag were common
features of reconnection in the magnetosphere.
[39] Our 2-D simulations cannot produce the Buneman

instability at the X line seen in these earlier simulations.
However, we can examine the distribution functions pro-
duced by our simulations and determine whether they
would be unstable in a full 3-D system. In the low-
temperature limit with k parallel to both B and the relative
drift velocity vb a plasma is Buneman unstable to wave
numbers satisfying the relation kvb < wpe [Krall and
Trivelpiece, 1986]. For finite temperature plasmas with
Maxwellian distributions the condition for instability is
more complicated, and, in fact, for small drifts in warm
plasmas, no instability exists. The instability threshold for
arbitrary distributions can be found numerically, but a
rough rule of thumb is that a plasma is Buneman unstable

if the electron and ion velocity distribution functions do
not substantially overlap (vb ^ vth).
[40] Figure 14 shows the distribution of vz at the X line

for runs with three values of the guide field, Bg = 0, 0.2, and
1.0. The dotted line shows the ion distribution, and the
double peak is a remnant of the two initial populations, the
nondrifting background and the drifting population com-
posing the initial current sheet. The three electron distribu-
tion functions demonstrate that as the guide field increases,
the X line electrons acquire a larger drift with respect to the
ions. The electron energy gain is limited by the amount of
time they spend within the current layer before advecting
into the outflow region. Larger simulations suggest that our
small system size may prevent the electrons from reaching
their maximum speeds. A finite Bg acts like a guide wire,
restraining this flow and leaving more time for a particle to
be accelerated by the reconnection electric field. If our
simulation were three-dimensional, the Bg = 1 case would
almost certainly be Buneman unstable, while the Bg = 0 case
would not. Again, the Bg = 0.2 case is transitional.
[41] The small size of the transition guide field has

important implications for magnetospheric reconnection.
The X line current sheet should usually be canted with
respect to the ambient current layer. Density and flow
velocities measured on the separatrices should have a
quadrupolar symmetry. Distribution functions taken just
upstream of the separatrices should exhibit an inward
flowing beam. Turbulence, and electron holes in particular,
should be common. Magnetospheric reconnection with
negligible guide fields should be rare.
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